1064 nm 波长白天卫星激光测距试验

邓华荣1,龙明亮1,张海峰1,2,吴志波1,2,汤 凯1,张忠萍1,2*

(1. 中国科学院上海天文台, 上海 200030;

2. 中国科学院空间目标与碎片观测重点实验室, 江苏南京 210008)

摘 要:1064 nm 波长大气透过率高、天空背景辐射小,采用该波长激光开展卫星测距,有助于提升测 距系统的探测能力,已成为国际测距技术的重要发展趋势之一。采用 2.2 nm 窄带滤光片,计算并测试 了白天情况下 1064 nm 波长测距系统的噪声,验证了该滤光片在白天对背景噪声的抑制效果。基于 圆心光路调节方法,夜间借助红外相机实现了 1064 nm 波长激光发射光路与机械轴的重合度调节,保 证了全天区优于 5"的激光指向精度,解决了白天观测条件下 1064 nm 波长激光精确指向问题。采用 重复频率为 1 kHz、功率为 5 W 的 1064 nm 激光器,建立了 1064 nm 波长白天卫星激光测距试验系 统,最远获得了地球同步轨道卫星的有效回波数据,实现了 1064 nm 波长白天激光测距。试验研究将为我国 1064 nm 在远距离卫星激光测距、空间碎片漫反射激光测距方面的应用与发展奠定了技术基础。 关键词:卫星激光测距; 1064 nm; 白天; 同步轨道卫星; 激光指向 中图分类号: P228.5 文献标志码: A DOI: 10.3788/IRLA20200021

Experiment of satellite laser ranging in daytime based on 1 064 nm wavelength

Deng Huarong¹, Long Mingliang¹, Zhang Haifeng^{1,2}, Wu Zhibo^{1,2}, Tang Kai¹, Zhang Zhongping^{1,2*}

(1. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
 2. Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract: At 1 064 nm, the atmospheric transmittance is high and the sky background radiation is small. The use of this laser to carry out satellite ranging is helpful to improve the observation capability of ranging system, and satellite laser ranging of the 1 064 nm has become one of the important development trends of international laser ranging technology. Based on the filter with a bandwidth of 2.2 nm, the noise of the 1 064 nm ranging system was calculated and tested in the daytime, which verified the suppression effect of this filter on the background noise during the day. With the help of the infrared camera at night, the coincidence between transmitting light path and the mechanical axis was realized based on the circular center method, which ensured the laser pointing accuracy is better than 5 " in all-sky area and solved the problem that the laser pointing at 1 064 nm needs real-time monitoring in the daytime. Based on the 1 064 nm laser with a repetition frequency of 1 kHz and a power of 5 W, Shanghai Astronomical Observatory established the 1 064 nm daytime satellite laser ranging experimental study will lay a technical foundation for the application and development of 1 064 nm laser ranging in long-distance satellite

基金项目:国家自然科学基金 (U1631240, 11903066)

收稿日期:2020-01-10; 修订日期:2020-02-15

作者简介:邓华荣 (1987-), 男, 工程师, 硕士生, 主要从事卫星激光测距方面的研究。Email: dhr@shao.ac.cn

通讯作者:张忠萍 (1960-), 男, 研究员, 博士生导师, 主要从事卫星激光测距方面的研究。Email: zzp@shao.ac.cn

and diffuse reflection laser ranging in space debris.

Key words: satellite laser ranging; 1 064 nm; daytime;

0 引 言

卫星激光测距 (Satellite Laser Ranging, SLR) 技术 作为目前卫星测距精度最高的技术,在航天器精密定 轨及全球范围的高精度激光时间传递等方面得到广 泛应用^[1]。

卫星激光测距中,信噪比大小直接决定了测距 系统的有效探测能力,提高信噪比在白天显得尤为重 要^[2]。与 532 nm 波长测距系统相比,1064 nm 波长 测距系统中,激光功率高、大气透过率高、相同能量 光子数多,诸多优势有助于提高回波信号。同时, 1064 nm 波长比 532 nm 波长的白天天空背景噪声强 度要低一个数量级以上^[3]。这将显著降低测距系统噪 声。随着近年红外探测与监视器件的日渐成熟, 1064 nm 波长卫星激光测距已成为国际激光测距技 术的一个重要发展方向^[4-5]。

在实际应用中,采用小发散角来提高回波信号 强度,这对激光指向精度提出了较高的要求。针对 1064 nm 白天激光指向监视具体问题,建立了激光指 向的校准模型,根据夜间红外相机完成了激光指向的 调节,即实现了光路与机械轴的重合度调节,满足了 白天卫星激光测距中的激光指向需求。

文中分析了白天 1064 nm 波长系统噪声情况,并 基于夜间 1064 nm 波长卫星激光测距基础,采用红外 监视相机完成了优于 5"的激光指向精度调节,接收终 端安装带宽为 2.2 nm 的 1064 nm 波长窄带滤光片, 建立了白天 1064 nm 卫星激光测距试验系统,开展了 观测试验研究,并对测量结果进行了分析。

1 1064 nm 波长白天激光测距技术分析

1.1 系统噪声分析与测试

在白天卫星激光测距系统中,噪声由天空背景噪 声及探测器暗噪声所组成,相对于白天天空背景噪 声,探测器本身的暗噪声比前者低两个数量级,可忽 略不计。根据白天卫星测距时的系统噪声计算公式⁶:

$$\Lambda = \frac{\eta_{\rm q} P_{\rm B}}{h\nu} = \frac{\eta_{\rm q}}{h\nu} N_{\lambda} (\delta \lambda) \, \Omega_{\rm r} A_{\rm r} \eta_{\rm r} \tag{1}$$

公式中的参数说明如表1所示。

geosynchronous orbit satellite; laser pointing

表1 噪声计算公式参数说明

Tab.1 Parameter description of noise calculation formula

Parameter	Description			
Л	Photoelectron rate of satellite laser ranging system			
$P_{\rm B}$	System noise power			
h	Planck's constant, $6.63 \times 10^{-34} \text{ J} \cdot \text{s}^{-1}$			
v	Optical frequency, 2.8×10 ¹⁴ Hz			
$arOmega_{ m r}$	Receiving field of view angle, 7.85×10^{-9} sr			
$A_{\rm r}$	Receiving area, 0.251 m ²			
$\eta_{ m r}$	Reception efficiency of telescope optical system, 0.37			
$\eta_{ m q}$	Quantum efficiency of detector, 0.2			
N_{λ}	Daytime sky spectral brightness			
δ_λ	FWHM of narrow filter, 2.2 nm			

对于公式中的天空光谱背景亮度 N_{λ} ,由参考文 献 [7]可知太阳夹角在 67.57°附近时,1064 nm 波长 附近的天空背景亮度约为 0.6~0.8 μ W·sr⁻¹·cm⁻²·nm⁻¹, 理论计算获得的数据 Λ 为 9.8~13.1 MHz。

为验证上述噪声分析结果,搭建了1064 nm 卫星 激光测距噪声测试系统,对1064 nm 波长的系统噪声 进行了测量。具体步骤如下^[8]:开启卫星激光测距系 统,驱动望远镜指向某一天区(与太阳不同的夹角), 使用激光测距软件对系统噪声进行采集。统计探测 器每个噪声的响应时间(*t*₁,*t*₂,*t*₃,...,*t*_i),并获得最小响应 时间为*t*_{min},对(*t*₁-*t*_{min},*t*₂-*t*_{min},...,*t*_i-*t*_{min})系列数据 求平均得到*t*_{avr},其倒数即为系统噪声。通过测量试 验,获得的系统噪声结果如表2所示,通过数据可以 看出,1064 nm 卫星激光测距噪声测试结果与理论计 算基本吻合。

表 2 1064 nm 波长白天背景噪声实测结果

Tab.2 Measured results of background noise at 1064 nm

in da	ytime	
Group	Angle with the sun/(°)	1 064 nm noise/MHz
1	59	10.7
2	62.5	11.8
3	58.8	11.2
Average	60.1	11.3

综上所述,装有带宽为 2.2 nm 窄带滤光片的 1 064 nm 激光测距试验系统噪声为 11.3 MHz,而上海 天文台 532 nm 激光测距系统 (采用带宽为 0.15 nm 的 窄带滤光片)噪声约为 3 MHz^[9], 1 064 nm 试验系统窄 带滤光片带宽虽为 532 nm 测距系统的 14.67 倍,噪声 仅为 532 nm 测距系统的 3.77 倍,如采用同 532 nm 激 光测距系统相同带宽的窄带滤光片, 1 064 nm 试验系 统约为 532 nm 系统噪声的 1/4,验证了 1 064 nm 天空 背景辐射低的优点。

1.2 激光指向模型与调节

第10期

中国科学院上海天文台(下称上海天文台)卫星激光测距系统采用收发分离式,通常利用后向散射进行激光指向监视,如图1所示。在532 nm 卫星激光测距系统中,可采用高速相机实现激光指向的实时监视与修正^[10]。在夜间时,可采用红外相机监视1064 nm激光光束指向。但目前现有红外相机无法满足监视 白天1064 nm激光指向的应用需求。因此,需对激光光路进行高精度调节,达到白天激光测距时无需监视激光指向的目的。

图 2 为激光发射光路示意图, Coude 1~Coude 5 为 45°反射镜片, 用以完成光路折转, 在激光未与望远 镜的方位机械轴、俯仰机械轴重合时, 激光指向随望 远镜的转动而变化。望远镜仰角固定时, 在相机上激 光指向的轨迹为一个圆弧, 而圆心即为望远镜的方位 轴, 俯仰轴亦是如此。实现激光发射光路与望远镜的 机械轴重合即简化为一个几何问题, 具体步骤如下。 借助夜间 1 064 nm 激光束监视相机, 在望远镜指向方 位 0°、仰角 60°和方位 180°、仰角 60°分别记录激光束 指向的位置 *A*1、*A*2 (如图 3(a) 所示), 调节相应镜片使 激光指向 A (A1、A2 的中点)。在俯仰轴调节过程中, 由于打倒镜的不变性,在望远镜指向方位 0°、仰角 20°;方位 0°、仰角 50°;方位 0°、仰角 70°位置分别记

图 2 激光发射光路示意图

Fig.2 Schematic diagram of laser transmitting path

(a) 方位轴重合度调节示意图(a) Schematic diagram for adjustment of axis coincidence of azimuth machinery

图 3 1 064 nm 激光指向机械重合度调节示意图

Fig.3 Schematic diagram for adjustment of axis coincidence of mechanical axis

录激光指向位置 H1、H2 和 H3 (如图 3(b) 所示),调节 相应镜片使激光指向 H (H1、H2 和 H3 圆弧轨迹的圆 心)。重复上述步骤 2~3 次后,可保证激光指向精度 优于 5"。

2 1064 nm 卫星激光测距试验系统介绍

在上海天文台收发分离式卫星激光测距中,发射 望远镜采用单片目镜与单片物镜的伽利略结构,接收 望远镜采用反射式卡塞格林式系统^[11]。对于发射望 远镜,由于透镜材料对不同波长激光的折射率不同, 1064 nm激光测距试验系统中物镜与目镜的距离, 需在 532 nm系统基础上增加约 14 mm (详细计算见 表 3)。

反射式接收望远镜没有色散效应,主要更换接收

终端系统内镜片以兼顾 1 064 nm 的测距试验系统需 求。图 4 列出了接收终端系统中的主要设备,其中 1 064 nm 滤光片、1 064 nm 激光指向监视相机以及 1 064 nm 探测器为此次试验增加的部分,分别用以对 白天背景噪声的抑制、1 064 nm 激光指向的监视以及 回波信号的探测。探测器采用三级制冷型,芯片为 Princeton LightwavePGA-200-1064,芯片靶面大小为 80 µm,在 1 064 nm 波段处的量子效率大于 20%。由于 1 064 nm 激光后向散射微弱,需将接收望远镜接收的 全部能量用激光指向监视,即采取激光指向监视与回 波信号探测分时进行的方法,这与 532 nm 测距系统 中回波信号探测同时监视激光指向是不同的。对于 其他设备,1 064 nm 卫星激光测距试验系统与 532 nm 测距系统相同,保证了试验系统的正常进行。

表 3 发射望远镜不同波长目镜与物镜的距离 (单位: mm)

Tab.3 Distance between the eyepiece and the objective lens of the transmitting telescope with different wavelengths (Unit: mm)

()				
Item	Eyepiece lens-532 nm	Objective lens-532 nm	Eyepiece lens-1 064 nm	Objective lens-1 064 nm
Refractive index	1.519 6	1.519 6	1.510 5	1.510 5
Radius of curvature 1	-96.41	œ	-96.41	œ
Radius of curvature 2	-704	-515.35	-704	-515.35
Thickness of glass	6	22	6	22
Focal length	-215.72	991.82	-219.55	1 009.5
Distance between objective and eyepiece lens	776.10		789.95	

3 试验结果与分析

根据第 2.1 部分的理论分析与测试数据,基于带 宽为 2.2 nm 窄带滤光片的 1 064 nm 卫星激光测距试 验系统,噪声为 532 nm 测距系统 (窄带滤光片带宽为 0.15 nm)的 3.77 倍。为提升 1 064 nm 白天测距试验 系统信噪比以及验证整个试验系统,对上海天文台自 研的一台 2.7 W@532 nm 激光器进行改造,将激光器 后级使用倍频晶体移出光路,实现了约 5 W的 1 064 nm 激光输出,激光器其他技术指标参数如下:发 散角(全角)为1.15 mrad、脉宽约为50 ps、重复频率为1 kHz。

根据第 2.2 部分的激光指向模型,在夜间借助 1 064 nm 监视相机精调了激光光路与望远镜的机械 轴的重合程度,解决了白天需实时监视激光指向的问 题。此节分别建立了 1 064 nm 白天测距试验系统的 发射光学系统、接收光学系统,在晨昏时间段 (太阳 高度角约 10°左右),开展了 1 064 nm 白天卫星激光测 距试验。试验系统分别对近地、中高轨、同步轨道卫

(a) Glonass132 实时测距界面 (a) Real time ranging interface of Glonass132

(c) Compassg1 实时测距界面 (c) Real time ranging interface of Compassg1

星开展了测距试验,均成功获得有效数据,图 5 为 1064 nm 测距试验系统不同卫星的实时测距界面、数 据预处理界面,测距部分数据如表 4 所示。从图 5 卫 星激光测距实时界面可以看出,激光回波信号线较粗 即精度较差,这主要是由于激光器存在多条脉冲。预 处理时仅对单条脉冲信号进行数据预处理,预处理结 果记录于表 4。对于 Glonass132、Compassg1 卫星, 1064 nm 测距精度与 532 nm 测距精度相当。

1064 nm 激光测距试验系统在白天获得了多圈

(b) Glonass132 数据预处理界面 (b) Data preprocessing interface of Glonass132

(d) Compassg1 数据预处理界面 (d) Data preprocessing interface of Compassg1

图 5 不同卫星实时测距界面、数据预处理界面

Fig.5 Real time ranging interface and data preprocessing interface of different satellites

表 4 1 064 nm 波长白天卫星激光测距结果

Date	Time/UTC	Satellite	Distance/km	Point	Precision/mm			
2018.11.23	22:05:13	Lares	2 499.54	8 047	10.3			
2019.01.22	9:26:13	Glonass132	19 856.53	2 658	24.4			
2019.01.22	9:30:23	Compassg1	37 268.53	298	22.3			
2019.06.14	7:36:17	Ajisai	3 577.05	57 212	10.5			
2019.06.14	7:57:51	Galileo201	17 436.90	4 990	12.7			
2019.06.14	8:44:7	Lares	2 499.54	5 505	15.4			
2019.06.14	8:41:31	Glonass133	19 475.90	3 947	23.9			

Tab.4 Satellite laser ranging results of 1 064 nm in daytime

次卫星的回波数据,与 532 nm 激光测距系统结果相 比,由于目前窄带滤光片带宽较大、系统噪声较大,目 前试验结果的回波点数较少。同时,由于激光光路与 望远镜机械轴的重合度调节在晚上进行,白天由于温 度变化以及太阳照射会引入望远镜机械轴的变化,目 前获得有效圈数较少。。

4 结束语

中文针对1064 nm 白天卫星激光测距中激光指 向监视的具体问题,在夜间建立了激光指向校准模 型,使得激光指向精度优于5"。在现有带宽为2.2 nm 窄带滤光片的基础上,对1064 nm 白天测距试验系统 的噪声进行了测量,实测数据与理论计算基本吻合。 开展了1064 nm 波长卫星激光测距试验,成功在白天 获得最远同步轨道卫星 Compassg1 的有效数据。后 续将调研半高带宽更窄的红外窄带滤光片以及消色 差发射望远镜的应用,优化探测器系统设计降低探测 器时间游动效应,以实现白天1064 nm 卫星激光测距 的常规运行。

参考文献:

Ye Shuhua, Huang Cheng. Astronomical Geodynamics[M]. Ji' nan: Shandong Science and Technology Press, 2000: 91-129. (in Chinese)

叶叔华,黄珹.天文地球动力学[M].济南:山东科学技术出版 社,2000:91-129.

- [2] Murphy T W, JR Adelbergere G, Battat J B R, et al. The Apache Point Observatory Lunar Laser-ranging Operation: Instrument description and first detections [J]. *The Astronomical Society of the Pacific*, 2008, 120: 20-37.
- [3] Wang Nan, Deng Huarong, Zhang Haifeng. et al. Daytime background noise analysis and application research in 1064 nm band [J]. *Laser and Infrared*, 2019, 49(10): 1190-1194. (in Chinese)

王楠,邓华荣,张海峰. 1064 nm波长白天背景噪声分析及应用研究[J]. 激光与红外, 2019, 49(10): 1190-1194.

- [4] Smith C H. The EOS space debris tracking system[C]// Advanced Maui Optical and Space Surveillance Technologies Conference, 2006.
- [5] Courde C, Torre J M, Samain E, et al. Lunar laser ranging in infrared at the Grasse laser station [J]. Astronomy & Astrophysics, 2016, 602(90): 1-12.
- [6] Zhang Ziang. Research on kHz satellite laser ranging echo detection system in the daytime[D]. Changchun: Changchun University of Science and Technology, 2012: 16-17. (in Chinese)

张子昂. 白天kHz卫星激光测距回波探测系统研究[D]. 长春: 长春理工大学, 2012: 16-17。

- [7] Sun Fengying. Study on the characteristic of the whole sky background radiation[D]. Heifei: University of Science and Technology of China, 2016: 39-42. (in Chinese) 孙凤萤. 全天空背景光谱辐射特性研究[D]. 合肥: 中国科学 技术大学, 2016: 39-42.
- [8] Ivan Prochazka, TerezaFlekova, Jan Kodet. New SPAD detector package for SLR and laser time transfer[C]//ILRS Technical Workshop, 2019.
- [9] Wu Zhibo, Deng Huarong, Zhang Haifeng, et al. Polarization effects of laser beam brightness and its application in Satellite Laser Ranging [J]. *Infrared and Laser Engineering*, 2016, 45(3): 0306005. (in Chinese)
 吴志波,邓华荣,张海峰,等. 卫星激光测距中光束亮度的偏振影响及应用[J]. 红外与激光工程, 2016, 45(3): 0306005.
- [10] 杨福民,肖炽,陈婉珍,等.白天卫星激光测距系统的设计和实测结果[J].中国科学(A辑),1998,28(11):1048-1056.
- [11] Meng Wendong, Zhang Haifeng, Deng Huarong. et al. 1.06 μm wavelength based high accuracy satellite laserranging and space debris detection [J]. *Acta Physica Sinica*, 2020, 69(1): 365-372. (in Chinese)

孟文东,张海峰,邓华荣,等.基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验[J].物理学报,2020,69(1):365-372.